Journal of Organometallic Chemistry, 180 (1979) 143–151 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

BISMUTH

ANNUAL SURVEY COVERING THE YEAR 1978

G. O. DOAK AND LEON D. FREEDMAN

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27650 (U.S.A.)

An important monograph on organobismuth compounds appeared in late 1977 [1]. This volume covers the literature as abstracted by Chemical Abstracts through May of 1976. There is a Table of Contents in both German and English and a formula index but no author index. The body of the text is in German and covers the synthesis and physical properties of all known organobismuth compounds. In addition to the above monograph, a volume of the familiar Houben-Weyl series on methods of organic synthesis has been published in which the subject matter is devoted to organic compounds of arsenic, antimony, and bismuth [2]. Thirty-six pages (out of a total of 626) are devoted to the synthesis of organobismuth compounds. The text is in German, and there is an author and a comprehensive subject index. Organobisint compounds have been discussed in the article on bismuth compounds in the recent revision of the Kirk-Othmer Encyclopedia of Chemical Technology [3]. Compounds in which organobismuth compounds are coordinated to transition elements were discussed in a recent book [4] by McAuliffe and Levason. These same authors [5] have also published a review article on the coordination chemistry of organostibines. The synthesis of some organobismuth compounds and their use as ligands to transition elements were also discussed in this review. A comparison of organic phosphines, arsines, stibines, and bismuthines in this review was of considerable value. A few organobismuth compounds were mentioned in a review article on organoarsenic, -antimony and -bismuth compounds described in the chemical literature during the year 1976 [6]. This review, however, was not published until 1978. The chemistry of bismin (bismabenzene) has been discussed in a review article on Group V heterobenzenes [7]. One organobismuth heterocyclic compound was mentioned in a review article on six-membered heterocycles containing phosphorus, arsenic, antimony, or bismuth [8].

Bismuth; Annual Survey covering the year 1977 see J. Organometal. Chem., Vol. 163 (1978) p. 141-150. Wieber and Baudis [9] have noted that the only known compound of the type  $R_2^{BiOR}$  was  $Et_2^{BiOEt}$ . They have now prepared four compounds Ph<sub>2</sub>BiOR, where R = Me, Et, CHMe<sub>2</sub>, or Ph, by the reaction:

The compounds were obtained as fine crystals, sensitive to atmospheric moisture and irritating to mucous membranes. Both PMR data and molecular weights from mass spectral data were reported. The compounds reacted with thiols to yield compounds of the type  $Ph_2BiSR$ , where R was  $CHMe_2$ ,  $CMe_3$ ,  $C_6H_{11}$  (cyclohexyl), or  $C_6H_4Me-p$ . Another compound prepared was  $Ph_2BiS(CH_2)_5SBiPh_2$ . The thio compounds were easily prepared from  $Ph_2BiOEt$  which was not isolated:

 $Ph_2BiBr + NaOEt \rightarrow Ph_2BiOEt + NaBr$ Ph\_2BiOEt + RSH  $\rightarrow$  Ph\_2BiSR + EtOH

The compounds were characterized by elemental analyses, PMR, and molecular weights (from mass spectral data).

In a second paper from Wieber's laboratory [10] the preparation of the compounds MeBi(OR)<sub>2</sub>, where R = Me, Et, or  $CHMe_2$ , was described. The compounds were obtained by means of the following reaction:

MeBiBr<sub>2</sub> + 2NaOR  $\rightarrow$  MeBi(OR)<sub>2</sub> + 2NaBr

The solvent for the reaction in each case was the corresponding alcohol, ROH. The compound MeBi(OEt)<sub>2</sub> was obtained in crystalline form by recrystallization from ethanol at low temperatures, but the other two compounds could not be crystallized and were obtained as powders by evaporation of the solvent. All three compounds decomposed without melting when heated. Their slight solubility in organic solvents other than alcohols prevented the determination of their molecular weights by cryoscopic methods. It was suggested that the compounds were polymeric in nature. They were, however, sufficiently soluble in CDCl<sub>3</sub> to allow determination of their PMR spectra.

The alkoxy compounds reacted with thiols as follows:

MeBi(OR)<sub>2</sub> + 2HSR'  $\rightarrow$  MeBi(SR')<sub>2</sub> + 2ROH (where R' = CHMe<sub>2</sub>, CMe<sub>3</sub>, C<sub>6</sub>H<sub>11</sub>, or o-C<sub>6</sub>H<sub>4</sub>Me) It was not necessary to isolate the alkoxy compound but simply to react MeBiBr<sub>2</sub> with an alkoxide (NaOMe) in alcohol and, after removal of the sodium bromide, to add a solution of the mercaptan. The thio compounds MeBi(SR)<sub>2</sub> were soluble in organic solvents, could be readily crystallized, and on the basis of mass spectral data were monomeric. The alkoxides MeBi(OR)<sub>2</sub> reacted with freshly distilled CS<sub>2</sub> to give xanthates according to the equation:

MeBi(OR)<sub>2</sub> + 2CS<sub>2</sub> \* MeBi(SC(S)OR)<sub>2</sub>

The PMR spectra of the methyl protons attached to bismuth in the xanthates appeared at lower field (approximately 0.5 ppm) than with the methyl signal of compounds of the type MeBi(SR)<sub>2</sub>. This result was attributed to a five-coordinate bismuth structure:



Mass spectral data on the mercaptides MeBi(SR)<sub>2</sub> gave the molecular ion for the monomeric form, but the molecular ion for the xanthates could not be obtained. The authors were unable to obtain useable mass spectral data for the alkoxy compounds MeBi(OR)<sub>2</sub>.

A number of interesting compounds containing the Bi-Ge bond have been reported by Bochkarev and coworkers [11]. This paper is a continuation of previous studies from this laboratory on compounds of the type  $[(C_6F_5)_3M]_nM'$ , where M was Si, Ge, or Sn and M' was either a transition or a main-group element.

At 90-100<sup>0</sup>C tris(pentafluorophenyl)germane reacted with triethylbismuthine as follows:

 $(C_6F_5)_3GeH + Et_3Bi \rightarrow [(C_6F_5)_3Ge]BiEt_2 + EtH$ 

The reaction was carried out in the absence of a solvent. The same reaction at  $170^{\circ}$ C gave  $[(C_6F_5)_3Ge]_2$ BiEt. The authors were unable to replace the third ethyl group and obtained only metallic Bi at higher temperatures. All attempts to obtain  $[(C_6F_5)_3Ge]_3$ Bi by an exchange reaction between  $(Et_3Ge)_3$ Bi and  $(C_6F_5)_3$ GeBr were unsuccessful. Again metallic bismuth was obtained as one of the reaction products. The tin compound  $(C_6F_5)_3$ SnH also reacted with Et\_3Bi under milder conditions than the corresponding Ge compound, but the product was unstable and could not be isolated in pure form.

References p. 150

The reaction of  $(C_6F_5)_2$ GeH<sub>2</sub> and Et<sub>3</sub>Bi was more complicated. On slow heating in the temperature range 60-105°C, only one ethyl group was evolved as ethane, but two ethyl groups were cleaved at higher temperatures. Rapid heating at 60-105°C, however, resulted in a violent reaction in which two moles of ethane were evolved. The product obtained in both cases was a dimer with the formula  $[(C_6F_5)_2GeBiEt]_2$ . This was a bright orange crystalline compound after recrystallization from benzene. In addition to the crystalline compound an undistillable liquid, believed to be a polymer of  $[(C_6F_5)_2GeBiEt]_2$ , was obtained. The material obtained by the loss of one mole of ethane could not be purified and characterized, but the presence of the compound  $(C_6F_5)_2Ge(H)BiEt_2$  was suggested by the IR spectrum of the reaction mixture. The following reaction scheme was suggested to account for the results:



The stability of the new compounds was in the order:

$$[(C_6F_5)_2^{\text{GeBiEt}}]_2 > [(C_6F_5)_3^{\text{Ge}}]_2^{\text{BiEt}} > (C_6F_5)_3^{\text{GeBiEt}}]_2$$

In all three compounds the Bi-Ge bond was cleaved by  $Br_2$  and by HCl, but the stability of the dimeric compound  $[(C_6F_5)_2GeBiEt]_2$  to HCl cleavage was surprising in that the cleavage reaction required three days to go to completion at room temperature. The presence of the  $C_6F_5$  group in the two compounds  $(C_6F_5)_3GeBiEt_2$  and  $[(C_6F_5)_3Ge]_2BiEt$  does not increase the stability of the Ge-Bi bond as indicated by a comparison with the corresponding phenyl compounds.

It was the expectation of the authors that compounds containing the Ge-Bi bond would display high reactivity in transmetallation reactions. However,  $(C_6F_5)_3$ GeBiEt<sub>2</sub> did not react with metallic Hg when the reaction was carried out at 20<sup>o</sup>C for six days. Under the same reaction conditions  $[(C_6F_5)_3Ge]_2$ BiEt reacted as follows:

$$3[(C_6F_5)_3G_2BiEt + 3Hg \rightarrow 3[(C_6F_5)_3G_2Hg + 2Bi + BiEt_3]$$

In an investigation devoted to the preparation of mixed triaryl compounds of the type  $Ar_3^EXY$ , where E was As, Sb, or Bi, Bhattacharya and Singh [12] attempted to prepare  $Ph_3Bi(CN)I$  by the reaction between  $Ph_3Bi$  and ICN. Instead they isolated  $Ph_2BiCN$  and PhI.

In a paper largely devoted to the fluorination of tertiary arsines and stibines, Ruppert and Bastian [13] have reported that  $Ph_3Bi$  can be readily fluorinated to  $Ph_3BiF_2$  by a stream of fluorine diluted with argon. The  $Ph_3Bi$  was dissolved in CFCl<sub>3</sub>, and the reaction was carried out at room temperature. Both <sup>19</sup>F and <sup>13</sup>C NMR were reported for the  $Ph_3BiF_2$ . The yield in the reaction was 78%.

Having previously demonstrated that trivalent phosphorus and arsenic compounds will dealkylate carbonyl-stabilized sulfonium ylids, Arbuzov and coworkers [14] have studied the reaction between  $Ph_3Sb$  or  $Ph_3Bi$  and the sulfur ylid I in the presence of NaBPh<sub>4</sub> at 200°C. The authors were unable to isolate either the stibonium or bismuthonium tetraphenylborates. However, they were able to isolate the cleavage product II of these salts which was taken as evidence that the reaction had proceeded in the following manner:



II

The 2-phenylthiodimedone II was found not to depress the melting point of an authentic sample.

The effect of the Group V triphenyl compounds  $Ph_3E$ , where E = P, As, Sb, or Bi, on poisoning of palladium-on-carbon hydrogenation of isoprene has been studied by Fujii and Bailar [15]. In the absence of a Group V triphenyl compound, isoprene was reduced by Pd-on-carbon to form 2-methyl-1-butene, 3-methyl-1-butene, and 2-methyl-2-butene with very little 2-methylbutane. The rate depended upon the hydrogen pressure but not the isoprene concentration. In the presence of  $Ph_3E$ the rate of hydrogenation was independent of the hydrogen pressure but was dependent on the isoprene concentration. As with unpoisoned catalysts, butenes were formed and there was comparatively little 2-methylbutane. However,  $Ph_3P$  and  $Ph_3As$  were more selective than either  $Ph_3Sb$ or  $Ph_3Bi$  as judged by the ratios between the various butenes formed. More 2-methylbutane was formed when the catalyst was poisoned with  $Ph_3Sb$ or  $Ph_3Bi$ . The authors suggested that the nature of the active site on the catalyst varied with the different Group V poisons used.

Razuvaev and coworkers [16] have studied the electronic emission spectra of a number of phenyl derivatives of Group IV (C, Si, Ge, Sn, or Pb) and Group V (N, P, As, Sb, or Bi) at 77 K in order to obtain information on donor-acceptor properties of complexes between oxygen and the organometallic species. The luminescence spectra of the organometallic compounds in *n*-hexane were first obtained at 77 K; the spectrum was then obtained after evacuation at  $10^{-4}$  torr and alternate freezing and unfreezing. There was a marked increase in the intensity of the spectrum during this procedure which was reversed by the addition of oxygen. These results were indicative of the reversible formation of a complex between the organometallic compound and oxygen. The bimolecular quenching was found to obey the Stern-Volmer equation:

 $I_p / I_p^{0_2} = 1 + K_q [0_2]$ 

(where  $K_{q}$  was cermed the quenching constant)

Values of this constant for the compound  $Ph_3E$ , where E = N, P, As, Sb, or Bi, were given and were found to decrease markedly in going from  $Ph_3N$  to  $Ph_3P$  and then increase slowly between  $Ph_3P$  and  $Ph_3Bi$ . These results were interpreted in terms of an electron donor-electron acceptor complex, and the variation in K was attributed to the amount of  $d_{\pi}-p_{\pi}$ interaction between the phenyl rings and the element E. Thus such interaction was absent where E = N and decreased markedly in the sequence P > As > Sb > Bi. The photoinduced (UV) substitution of CO groups by the ligands ER<sub>3</sub> (where E = As or Sb and R = alkyl, aryl, or ethoxy) and Et<sub>3</sub>Bi in the compounds  $[Et_4N][V(CO)_6]$  and  $[n^5-cpV(CO)_4]$  (Cp = the cyclopentadienyl group) has been studied by Talay and Rehder [17]. With Et<sub>3</sub>Bi and  $[Et_4N][V(CO)_6]$  the compound  $[Et_4N][V(CO)_5BiEt_3]$  was obtained but with  $[n^5-cpV(CO)_4]$  two compounds,  $[n^5-cpV(CO)_3BiEt_3]$  and cis- $[n^5-cpV(CO)_2(BiEt_3)_2]$ , were isolated. The IR spectra and <sup>51</sup>V NMR spectra of the compounds were given and compared with spectral values of the compounds previously obtained with the corresponding R<sub>3</sub>P ligands. From the <sup>51</sup>V NMR chemical shift values a sequence of overall increasing ligand strengths in the order Et<sub>3</sub>Bi < R<sub>3</sub>As < R<sub>3</sub>P < R<sub>3</sub>Sb was given.

Oxybis(triphenylbismuth) dichloride, (Ph<sub>3</sub>BiCl)<sub>2</sub>O, has been found to be a mild but effective reagent for the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively [18]. The reagent was easily prepared by the hydrolysis of triphenylbismuth dichloride and was readily soluble in dichloromethane, chloroform, or benzene. It was particularly useful for the oxidation of allylic alcohols and was also applicable to the cleavage of 1,2-glycols. The carbonyl compounds formed in these reactions were readily separated from triphenylbismuthine by chromatography on silica gel or by heating the reaction mixture with acetic acid in order to keep the bismuth-containing substances in solution.

The decomposition of pentaphenylbismuth in pyridine, chloroform, or carbon tetrachloride at room temperature has been studied by Razuvaev end coworkers [19]. The decomposition was somewhat more rapid in pyridine solution than in the chlorinated solvents. In every case Ph<sub>3</sub>Bi, PhH, and a resinous solid, believed to be formed by the polymerization of benzyne, were obtained:

The formation of benzyne was demonstrated by running the reaction in the presence of furan,  $\pm$ -butyl alcohol, or moist pyridine. With THF, the Diels-Alder addition product was isolated, with  $\pm$ -BuOH,  $\pm$ -BuOPh was obtained, while with moist pyridine the products included phenol and diphenyl ether. When the decomposition of Ph<sub>5</sub>Bi was carried out in CCl<sub>4</sub> solution in the presence of Ph<sub>3</sub>Sb, an organoantimony product was obtained which was believed to be a dipolar antimony compound (see Antimony section):

The authors postulated that pentaphenylbismuth decomposed in an organic solvent to give the dipolar bismuth compound which then underwent further decomposition to yield benzyne:



## REFERENCES

- M. Wieber, Gmelin Handbuch der Anorganischen Chemie, Bd. 47, Bismut-Organische Verbindungen, Springer-Verlag, Berlin, 1977.
- S. Samaan, Methoden der organischen Chemie (Houben-Weyl) Bd.
   13, Pt.8: Metallorganische Verbindungen, As, Sb, Bi, Georg Thieme Verlag, Stuttgart, 1978, pp. 590-626.
- 3 G. G. Long, L. D. Freedman, and G. O. Doak, Kirk-Othmer Encycl. Chem. Technol., 3rd Ed., 3 (1978) 921.
- 4 C. A. McAuliffe and W. Lavason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979.
  Both Chem. Abstr., 89 (1978) 208395c, and various advertisements for this book indicated that the publication date was 1978.
- 5 W. Levason and C. A. McAuliffe, Acc. Chem. Res., 11 (1978) 363.
- 6 J. L. Wardell, Organomet. Chem., 6 (1978) 162.
- 7 A. J. Ashe, III, Acc. Chem. Res., 11 (1978) 153.
- 8 R. E. Atkinson in S. Coffey, ed. Rodd's Chemistry of Carbon Compounds, 2nd ed., Vol. IV, Pt. G: Six-membered Heterocyclic Compounds With a Single Hetero-Atom from Group V of the Periodic Table, Elsevier, Amsterdam, 1978, p. 114.
- 9 M. Wieber and U. Baudis, Z. Anorg. Allg. Chem., 439 (1978) 134.
- 10 M. Wieber and U. Baudis, Z. Anorg. Allg. Chem., 439 (1978) 139.
- 11 M. N. Bochkarev, N. I. Gur'ev, and G. A. Razuvaev, J. Organomet. Chem., 162 (1978) 289.
- 12 S. N. Bhattacharya and M. Singh, Indian J. Chem., Sect. A, 16A (1978) 778.
- I. Ruppert and V. Bastian, Angew. Chem., Int. Ed. Engl., 17 (1978) 214.
- 14 B. A. Arbuzov, Yu. V. Belkin, N. A. Polezhaeva, and G. E. Buslaeva, Izv. Akad. Nauk SSSR, Ser. Khim., (1978) 1643.

- 15 Y. Fujii and J. C. Bailar, Jr., J. Catal., 52 (1978) 342.
- 16 G. A. Razuvaev, A. N. Egorochkin, V. A. Kuznetsov, V. N. Glushakova, A. V. Shabanov, Yu. A. Alexandrov, and Yu. Yu. Baryshnikov, J. Organomet. Chem., 148 (1978) 147.
- 17 R. Talay and D. Rehder, Chem. Ber., 111 (1978) 1978.
- 18 D. H. R. Barton, J. P. Kitchin, and W. B. Motherwell, J. Chem. Soc., Chem. Commun., (1978) 1099.
- 19 G. A. Razuvaev, N. A. Osanova, V. V. Sharutin, A. I. Sorokin, and I. E. Okhlopkova, Dokl. Acad. Nauk SSSR, 238 (1978) 361.